Sense Embedding Learning for Word Sense Induction
نویسندگان
چکیده
Conventional word sense induction (WSI) methods usually represent each instance with discrete linguistic features or cooccurrence features, and train a model for each polysemous word individually. In this work, we propose to learn sense embeddings for the WSI task. In the training stage, our method induces several sense centroids (embedding) for each polysemous word. In the testing stage, our method represents each instance as a contextual vector, and induces its sense by finding the nearest sense centroid in the embedding space. The advantages of our method are (1) distributed sense vectors are taken as the knowledge representations which are trained discriminatively, and usually have better performance than traditional count-based distributional models, and (2) a general model for the whole vocabulary is jointly trained to induce sense centroids under the mutlitask learning framework. Evaluated on SemEval-2010 WSI dataset, our method outperforms all participants and most of the recent state-of-the-art methods. We further verify the two advantages by comparing with carefully designed baselines.
منابع مشابه
Context-Dependent Sense Embedding
Word embedding has been widely studied and proven helpful in solving many natural language processing tasks. However, the ambiguity of natural language is always a problem on learning high quality word embeddings. A possible solution is sense embedding which trains embedding for each sense of words instead of each word. Some recent work on sense embedding uses context clustering methods to dete...
متن کاملOn Modeling Sense Relatedness in Multi-prototype Word Embedding
To enhance the expression ability of distributional word representation learning model, many researchers tend to induce word senses through clustering, and learn multiple embedding vectors for each word, namely multi-prototype word embedding model. However, most related work ignores the relatedness among word senses which actually plays an important role. In this paper, we propose a novel appro...
متن کاملWord Embeddings, Sense Embeddings and their Application to Word Sense Induction
This paper investigates the cutting-edge techniques for word embedding, sense embedding, and our evaluation results on large-scale datasets. Word embedding refers to a kind of methods that learn a distributed dense vector for each word in a vocabulary. Traditional word embedding methods first obtain the co-occurrence matrix then perform dimension reduction with PCA. Recent methods use neural la...
متن کاملInfinite Dimensional Word Embeddings
We describe a method for learning word embeddings with stochastic dimensionality. Our Infinite Skip-Gram (iSG) model specifies an energy-based joint distribution over a word vector, a context vector, and their dimensionality, which can be defined over a countably infinite domain by employing the same techniques used to make the Infinite Restricted Boltzmann Machine (Côté & Larochelle, 2015) tra...
متن کاملA Simple Approach to Learn Polysemous Word Embeddings
Many NLP applications require disambiguating polysemous words. Existing methods that learn polysemous word vector representations involve first detecting various senses and optimizing the sensespecific embeddings separately, which are invariably more involved than single sense learning methods such as word2vec. Evaluating these methods is also problematic, as rigorous quantitative evaluations i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.05409 شماره
صفحات -
تاریخ انتشار 2016